
896 STATISTICAL GEOMETRY. II 

APPENDIX 1 
Discussion of the transcendental equation 

Consider 

In(p) + up + v = 0 (A 1.1) 

which can be written in reduced form as 

/~ = exp{-fi/3}, (A 1.2) 
where 

/5 = p  exp{v}; and f i = u e x p { - v } .  (A1.3) 

Using simple algebra it can readily be shown (see Fig. 
1) that (A 1.3) has: 

(i) one solution if u > 0. 
(ii) two solutions if -exp  {-  1 } < u exp {-v } < 0. 
(iii) no solutions if u < -exp{v - 1 }. 

The coordinates of the critical point (fic,/?c) are 
(-e-l ,e).  

In practice, (A 1.1) can be solved for p by numerical 
iteration for p using Newton's method, viz. 

p(1) = [I + up (°)] exp{-up (°) - vt 

x[1 + u exp{-up (°) -  v}] -l. (A1.4) 

APPENDIX 2 
Determination of~, o 

In practice, we have found it adequate to determine 2 0 
in the SPE by successive iteration using Newton's 

method. If p(0,0) is the solution (not necessarily a 
probability distribution) to (A 1.1) obtained when 20 = 
2(0 °), then the improved estimate for 20 is given by 

2(01)=2(00)+I--1 +~j exp{--U)°)p)°'o)--V)°)} 1 

7 ], x exp{ ~o) ~o,o) irT~o) o,oq , -U) p) - VJ°) } / [1  + - j  pJ 

( A 2 . 1 )  

where UJ °) and VJ °) are evaluated in the trial prob- 
ability distribution p(0). Notably, 20 may be refined 
without re-evaluation of U) °) and V) °), and hence does 
not involve heavy computation. 
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Abstract 1. Introduction 

A method for greatly improving the efficiency of 
numerical procedures for solving the fundamental 
equations of the statistical geometric method [Wilkins, 
Varghese & Lehmann (1983). Acta Cryst. A39, 47-60] 
is presented. The method involves optimizing the step 
length in a one-dimensional search based on two trial 
solutions. For constraint functions, fr, which have 
derivatives f~d = Ofr/c~pj, which are linear in p, it is 
shown that the one-dimensional search does not involve 
any additional Fourier transforms (i.e. lengthy 
computations). 

0108-7673/83/060896-03501.50 

In order to make the statistical geometric (SG) method 
outlined in I (Wilkins, Varghese & Lehmann, 1983) a 
practical tool for the structure determination and 
refinement of biological macromolecules, it is essential 
that highly efficient methods for solving the fundamen- 
tal equations (1.14) (see also Gull & Daniell, 1978) be 
developed. Simple iteration of these equations (see Gull 
& Daniell, 1978) is found to converge only weakly (in 
Borel sum) and slowly. In the second paper of this 
series (Wilkins, 1983, hereafter termed II), we outlined 
some improved methods of solution of the SG problem 
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for the maximum-entropy structure (MES), p($), based 
on self-consistent solution of a single pixel equation 
(SPE). In the present paper we show how the 
convergence to the MES may be greatly accelerated in 
practice by the use of, say, two trial structures and a 
one-dimensional variational procedure. For cases 
where the constraint functionf,(p) has a derivative with 
respect to pj, i.e. f~d(P) (defined in I), which is linear in 
p, no additional derivative evaluations (i.e. Fourier 
transforms) are required in order to optimize the 
one-dimensional search (§ 4). In addition, the present 
contrast amplification procedure guarantees that the 
solution never gets worse in, say, a least-squares sense. 

The notation and definitions of quantities used here 
are those introduced in I and II. 

2. Contrast amplification 

Given two arbitrary probability distributions [usually 
successive iterates for the self-consistent solution of 
(I. 14) or (11.2) for given 2], say p(Z) and pro, one may 
seek to obtain the best estimate for the next trial value 
of p, say pt. One approach to this problem (see also 
Wernecke & Addario, 1977) is as follows. Consider 

p t (~  = p(l)  + fl[pt2)_ pml, (1) 

where fl is a scalar, then clearly pt(fl) is also a 
probability distribution provided 

O___p5_< 1 forallj ,  

i.e. provided fl satisfies the following conditions, namely 

-min{p}*)/[p} 2) -- p}')] } _< fl < min{[p}nax -- p} 1)] 

_ [p}2)_ pS,)l }, for ~ p}2) _> p),) (2) 

and 

--min {[ p}nax _ p} l l ] / [  p},) _ / )}2) ]}  N fl < min{ p}') 

+[p} ,_p}2)]} ,  for V p}U >p}2), 

where strictly p~,X = 1, although one may in practice 
choose a smaller value from other considerations (such 
as the maximum expected peak height based on known 
types of atoms present in the structure). Physically, the 
[p(2) _ p(~)] term in (1) corresponds to the contrast 
between successive structure iterates and thus fl may be 
viewed as a contrast-amplification factor. 

3. Accelerated convergence 

Since pt is a probability distribution it is a possible 
candidate for solving (I.14a) and one may seek to 
choose the fl in (1) subject to (2), which gives the most 
nearly self-consistent solution to (I.14) in, say, a 
least-squares sense. Since we already know pt(fl) for 

/~ = 0 and fl = 1, one further trial evaluation of p(a) 
suffices to allow determination of a local optimum for 
fl, say flmin, in a least-squares sense. Because 
approaches to the solution of (I. 14) are often quite slow 
(see, e.g., Gull & Daniell, 1978), such methods as this 
can lead to a very significant reduction in the number of 
iterations required to attain convergence of #")(J.), for 
given 2. The method is not restricted to the simple 
iterative method (see, e.g., Gull & Daniell, 1978) or the 
SPA and may readily be applied to all structure or 
image processing problems based on a probability 
distribution. Essentially, the method replaces an N- 
dimensional search in p space by a one-dimensional 
search in fl space. In practice, one may evaluate the 
sum of squared deviations (s.s.d.), O, as a function of fl 
for, say, one additional value of fl and then determine 
flmin by quadratic fitting [a more efficient procedure 
involving no extra explicit evaluations of (1.14) is 
possible under certain conditions, and this is discussed 
in § 4]. A cautionary note regarding the use of (1) is 
that although mathematically (1) guarantees nor- 
malization of p t ( f l )  for arbitrary p, in practice it has 
been found prudent to normalize pt(fl), especially when 
[#2) _ p(~)] is small and fl may be large. In such cases 
there is the danger that 'noise' as well as 'signal' is being 
amplified and some form of adaptive smoothing may 
prove beneficial, although we have not tried this. It 
should also be pointed out that the method of contrast 
amplification never leads to a worse solution in, say, a 
least-squares sense, and so helps to avoid problems of 
'overshoot' or oscillation. 

4. Scaling properties 

For constraints such that f~,j is linear [or has been 
linearized, see, e.g. (II.1)] in &, some special scaling 
properties apply so that ~(fl) and hence flmln may be 
determined without any further explicit evaluations of 

f¢.j (i.e. Fourier transform operations). To illustrate 
this, consider constraint (1) in Table 1 of I, for which 

1 ~ ,  (Pk--Ek) exp{-2nUk/N} (3) 
f l' J = -~l k"~D O= l k ,  1 

and is clearly linear in pj. The fundamental equation 
(I. 14) may be written as 

pj = exp{--21fl,j(p)}/Z(~.), (4) 

where, for simplicity, we are working with the f) 
formulation rather than f) (i.e. we have chosen C~ = 0 
and f is the appropriate normalizing factor). 

The aim is then to find the self-consistent solution to 
(4) [e.g. minimum of, say, • giving the s.s.d.'s for (4)]. 
To this end, we note that substitution of (1) into (4) 
leads to the result that: 

l.h.s, of ( 4 ) - p j ( f l ) - p } ' )  + fl[pj2) _ p } , ]  (5a) 



898 STATISTICAL GEOMETRY. III 

r.h.s, o f  (4) - -  R[#; p j l ) ,  (~ ,1 ) ,  p ) 2 ) ,  ( ~ 1 ) ,  Z l ( / ] , l )  , z 2 ( , ~ 1 )  ] 

- Z[2,,  #],  

where 

(Sb) 

R ( # ) =  [p}')'11-/3[pjZ)'l/3Z~(2,)'-/3Z=(2,)/3. (6) 

In (5)p)l),, e.g., here denotes the iterate of (4) produced 
when p)~) is substituted on the r.h.s, of (4) {and 
corresponds to p[2~;p (1)] in I}, while Z(21;fl) is the 
normalizing factor appropriate to the r.h.s, of (4) when 
p(#) is substituted there. 

The key point of these manipulations is that both the 
l.h.s, and r.h.s, of (4) can be evaluated for arbitrary fl 
without any need to re-evaluatefl.j. Thus the s.s.d., tO, 
is given by 

N 

tO t# ;  p(1), p(2), ~, 1] ---- Z {PJ(#)  
j = l  

-- R [fl; p)')', pj2),, Z,(2,), Z2(2,)] 

---" Z ( ~ I ;  # ) } 2 ,  (7) 

which may be evaluated for arbitrary #, and so fl in (1) 
optimized, without much extra computation (i.e. no 
extra Fourier transform operations).* 

5. Discussion and conclusions 

The present contrast-amplification procedure, involving 
a one-dimensional search in fl space, has been used in 
numerical methods for solving the fundamental 
equations of the statistical geometric method 
(I.14) via the single pixel approximation (see II) and 
found to improve greatly the efficiency of the solution 
procedure (Fig. 1). In addition, the procedure guaran- 
tees that the solution never gets worse in, say, a 
least-squares sense and can give information on nearby 
solutions in p space. 

Although presented for the simple case of two trial 
distributions, the contrast-amplification procedure may 
clearly be extended to t trial distributions leading to 
optimization of tO(#) in a (t - 1)-dimensional # space. 
A special case which merits discussion is that of the 
'flat-map' distributionpj = 1/Nfor V j =  1 . . . . .  N. This 
distribution may always be added to (1), usually 
without involving any extra Fourier transforms (since 
Pk = 0 for ¥ k 4= 0), and so provides a means for 
optimizing the background level in the map at each 
stage. 

* Note added in proof" An alternative approach is to evaluate the 
derivatives of O(fl) with respect to fl about fl = 0. 

i0-~ 

I0" 

10 -4 

10-5 

10 - 6  
0 

N =40  
Ist constroml only 

\ .(0\ \ \ 

I I / I I I I I I 
I 2 5 4 5 6 7 8 9 

number of /~ ophmtzoflon cycle 

Fig. 1. Plot of s.s.d., q~, for solution of eqs. (I.14) via the single 
pixel approximation, as a function of the number of #-refinement 
cycles. Convergence of the solution was taken to have occurred 
when q~ < 10 -5, which corresponds to better than 2% in pj relative 
to the 'flat map', i.e. pj = 1IN for all j. The simulated structure 
refinement is for the same model as in § 4.6 of I. 

In the following paper in this series (Varghese & 
Wilkins, 1983). we shall give results for simulated 
structure determinations on a simple one-dimensional 
model structure, which were derived using the SPA and 
the contrast-amplification procedure in concert. 

I am grateful to Drs J. N. Varghese, C. H. J. 
Johnson, and A. McL. Mathieson and J. Skilling for 
helpful discussions and to Miss R. Wong for assistance. 
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